Barry Cordage Blog

Staying Safe in Energized High-Voltage Substations with Vertical Safety Nets

Written by Patrick Barry | 28-Oct-2022 2:24:17 PM

When work is performed in a high-voltage substation, it is imperative that workers stay safe at all times. Over the last decade, Barry has undertaken various mandates to design site-specific safety net systems to protect against the potential danger of flying debris within energized high-voltage electrical substations.

Similar to our horizontal dielectric safety nets acting as guard structures, the concept of these vertical safety nets is to allow maintenance or repairs to be performed without requiring an outage, all the while eliminating the risk of exposure to projectiles for workers.

Barry Vertical Safety Nets

These net systems create an effective barrier to block flying epoxy shrapnel and debris that could be projected as a result of a sudden failure of bushings, insulators, arrestors, etc. during maintenance, thereby protecting workers, assets, and equipment in the vicinity.

For example, in a substation with multiple breakers, these net barriers can be set up around the breaker bay to contain the affected equipment while maintenance activity in the close proximity is carried out and the unaffected breakers remain energized.

The Barry net systems are temporary measures designed to be installed and disassembled quickly and easily with minimal to no impact on the pre-existing support structure, thus allowing this process to be repeated throughout the entire facility efficiently and safely.

Barry Vertical Safety Nets-1

In one configuration, the Barry Vertical Safety Net system has a triple layer of netting and is designed to be hung loose for maximum impact energy absorption. Relying on the existing metal structure as anchor points, there are four panels for each breaker bay to cover the bay in all directions. The net is supported horizontally using Barry D.E.W. LineĀ® insulating ropes, with multiple attachment points to the structure for easy in-situ adjustments.

Working in collaboration with our clients, our design process requires an initial analysis to understand the risks and potential impact forces of the projectiles. Using in-house testing methods or data from previous studies we arrive at a design prototype. The next step is to validate the installation compatibility and perform an on-site fit check and validation and proceed to the verification of all the connection hardware or tools which may be required for installation.

Contact us for more information today!

Further reading: